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The Gaussian Potential: Bound States 
in the Continuum ?* 
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Simple variational solutions to the problem of a single particle in a Gauss ian potential well in 
N dimensions,  N being positive and real, are investigated. The system exhibits locally bound states in 
the cont inuum,  which are demonstra ted to be artifacts of  the variational procedure. The relevance of 
the conclusions to recent studies of  the possible existence of  bound states in the cont inuum is discussed. 
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I. Introduction 

The existence and physical significance of b o u n d  as well as quasi-bound 
(resonance) states in the continuum has long been considered. Hamiltonians 
having bound states embedded in a continuum in a trivial manner are easily con- 
structed for systems possessing non-interacting degrees of  freedom one of  which, 
at least, has a continuous as well as a discrete spectrum. Well known examples are 
doubly excited configurations of non-interacting electrons, or molecules in a 
Born-Oppenheimer excited electronic state embedded in the nuclear motion con- 
tinuum of  a lower electronic state. In these two cases the coupling between the 
different degrees of  freedom (interelectronic repulsion in the first instance and 
nuclear-electronic coupling, breaking the Born-Oppenheimer approximation, in 
the second) mixes the bound with continuum states. What would be more interest- 
ing is the possible existence of Hamiltonians in which all degrees of  freedom are 
coupled, yet possessing bound states degenerate with a continuum but non- 
interacting with it. Some nontrivial examples in which a bound state moves into 
the continuum while rigorously remaining a square integrable steady-state solution 
of the Schroedinger equation, are discussed by Stillinger and Herrick [1]. Some 
rigorous theorems are available, which exclude the occurrence of bound states 
embedded in the continuum for certain types of  potentials [2]. 

It would, however, be much more significant to establish the existence of  bound 
states embedded in the continuum for systems which can conceivably be realized 
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experimentally. Negative as well as multiply excited atomic and molecular species 
are probably the most likely candidates to investigate with this aim in mind. 

These systems, which include the two electron atoms, are beyond the scope of  the 
presently known rigorous theorems and analytical treatments, and can therefore 
be studied only by means of approximate methods such as variational computa- 
tions. 

The use of  variational methods has long been known to exhibit a large variety 
of non-physical characteristics which can be traced back to the restrictions 
imposed on the space in which the variations are carried out [3]. These charac- 
teristics are usually associated with the existence of more than one solution to the 
variational problem. The types of situations hitherto discussed in this connection 
involve two solutions for both of which some extremum condition is satisfied (a 
first derivative or a first variation of some energy type quantity vanishes). An 
additional class of  complications can arise if the absolute minimum is obtained on 
the boundary of  the range of the variational parameters involved, rather than 
satisfy an extremum condition within the range. The simplest example involves 
some exponential parameter which characterizes the long range fall-off of the 
variational wavefunction, and which obtains the value zero. This implies a state 
becoming unbound, but does not preclude the existence of  a local minimum of the 
variational problem which does possess an energy value higher than the one cor- 
responding to the free state. Such a bound state is necessarily embedded in a 
continuum of free states. 

In the present communication a model system which possesses bound varia- 
tional approximations embedded in the continuum is investigated. This system 
is separable, but not in the sense leading to trivial degeneracies between bound 
states and an unrelated continuum. Moreover,  the rigorous theorems which 
exclude the existence of  bound states in the continuum in fact apply to this system. 
The nature of  its variational solutions and their detailed behaviour are therefore 
directly relevant to the understanding of the power and limitations of  using the 
variational method to establish the existence of bound states in the continuum. 

The variational solutions of the model system here studied share some charac- 
teristics with the two electron atom studied by Stillinger and Stillinger [4] in spite 
of  certain obvious differences. 

2. The Gaussian Potential : A Qualitative Analysis 

Given the N-dimensional Hamiltonian 

1 ~ d 2 
a f  = - ~  7~[x~ - 2Z .  exp ( -  fl. r2) 

i = 1  

where 

(1) 

N 
r 2 = ~ x 2 

i = 1  

we first consider the variational function 0 = exp ( -  e-r2). The energy is given by 
E = nc~ -- 2Z. (2c~/(2e + fi))", where n = N/2. In order to obtain a normalizable (bound) 
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wavefunction one has to require e > O. Furthermore, at c~ = 0 one obtains E =  O, 
provided that n > 0. The variational parameter e is determined by solving the 
equation 

8 E _ n [ I _ 4 Z  ft. (2~) ~-~ ] 
8c~ ( 2 ~  ~,,~-1 = O. (2) 

The nature of the solution is determined by the sign of 

82E (2e)"- 2 
O~ 2 - 8Zfin (2~ + fl)" + 2 [4e - ft. (n - 1)]. (3) 

One should note, however, that Eq.(2) does not necessarily possess a (real) positive 
solution. Furthermore,  a solution of Eq.(2), even if it is a local minimum by the 
criterion provided by Eq.(3), may actually correspond to an energy value E > 0 .  
In this case the variational solution is embedded in the continuum of positive 
energy states. 

Inspecting the form of Eq.(3) one easily realizes that for N <  2, only a minimum 
can exist for non-negative ~, and for N >  2, both a minimum and a maximum can 
exist. 

The following special cases are particularly simple: 

a) a>>fl" 

In this case 

so that 

and 

8E 
- - ~ - n .  [1 -zfi/~ 2] = 0  

o¢..~x//~ ; E~-" n x / - ~ -  2Z ; 
E 

lim . . . .  2 
Z~oo  Z 

a2E 
&d - [ 4 a -  f l(n- 1)]. n/(2flZ). 

The initial assumption c~>>fl is satisfied provided that Z>>fl. The solution is a 
minimum if c~= x/flZ>fi/4(n-1). This is true for any positive ~ if N < 2 ,  but for 
N > 2  only if Z>fi /16(n- l )  2. However, as here we also require Z>>fl, the above 
condition becomes relevant only for N >  10. For  large Z the ground state solution 
becomes identical to that of a harmonic oscillator with a force constant equal to 
k=O2V/gX21o=4flZ, which is a Gaussian with c~ =½x/k=  x f ~ ,  in agreement with 
the result just established. 

b) a<<fi 

Here 
E~- n- c~ - 2Z. (2c~/fl)" 

[- (2c~),- lq 8E 1 -  4 Z / L ~  =0  J 
82E 8Zfln(n (2cd" 2 
~(Z2 ~ '  - -  - -  1). ~ . 
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Hence, a solution is obtained for e-~ ½. (~"/4Z) 1/("- 1). 
For  N < 2  this low e solution is a minimum, but for N > 2  it is a maximum. 

Furthermore,  

c3e 
- -  ~ -  [ ( f i / Z ) " / 4 ]  1 1 ( . -  1)/[2. (1 - n)] 
a Z  

so that c~ increases with Z if N < 2 and decreases with Z if N > 2. 
The low ~ maximum and the high ~ minimum merge into one another when the 

two conditions c~E/&~ = 0  and 02Efl?~z= O, (Eqs.(2), (3)) are simultaneously satis- 
fied. 

This gives for the values of  c~ and Z at which the merging occurs 

fl fl ( n + l )  n+l  
%-- ( n - l )  and Z c = 1 6  (n_  l) ,_ 1. 

A neighbourhood of considerable interest is that associated with the vanishing 
of  the energy. This occurs when the two conditions E =  0 and OE/Oo~ = 0 are satis- 
fied. F r o m  these two equations one obtains 

/~ ( n - l )  and Z o ~ nn+l 
% = 2 '  4 ( n - l )  "-1 

The nature of  the intersection of the energy curve with the E =  0 axis can be 
studied by evaluating 

a(E/z)  8 ( n - l )  N-1 

This quantity vanishes for N =  2, in which case the bound energy merges into the 
bo t tom of the continuum in a tangential manner,  thus exhibiting a second order 
discontinuity. However, for N >  2 the bound state energy penetrates into the con- 
t inuum as Z is lowered below Z 0 . This is also reflected by the behaviour of  %,  
which vanishes for N = 2, but obtains a positive value for any higher dimensionality. 

3. Computed Results 

The results presented in Figs. 1 and 2 are in complete agreement with the above 
discussion. They exhibit the penetration into the continuum of the quasi-bound 
ground state on decreasing the depth of the Gaussian potential well, for a dimen- 
sionality greater than two. They also exhibit the merging of  the local minimum 
with the maximum which separates it f rom the zero energy absolute minimum at 
~ z 0 .  

In order to further investigate the problem the two-Gaussian variational wave- 
function was studied in detail. The results, shown in Figs. 3 and 4, indicate an 
(expected) improvement  over the one-Gaussian results as far as the energy is con- 
cerned. The most  significant feature of  these results is, however, the fact that the 
behaviour is still very similar to that of the single Gaussian wavefunction : Pene- 
tration of  the bound state into the cont inuum is still observed. Moreover,  the 
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Fig. 1. Energy v s .  well depth for the one Gaussian wavefunction 
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Fig. 2. The variational parameter  for the one Gaussian wavefunction 

existence of  the bound state in the continuum is again terminated by merging with 
a max imum which, in parameter  space, lies between the local minimum corres- 
ponding to the bound state discussed and the zero energy absolute minimum 
corresponding to an unbound particle. Further computat ions with basis sets of  
3, 4 and 5 Gaussians have confirmed the main conclusions presented. The range of 
existence of  the positive energy bound solution, Z o - Zc, where Z o is the value of  Z 
for which E = 0 and Z c the value for which the minimum and maximum merge, is 
plotted vs. the basis set size, for different dimensionalities, in Fig. 5. The curves 
indicate that for a sufficiently large basis set the penetration into the continuum 
disappears altogether, as one expects. 

The Gaussian wavefunction does not have the correct exponential asymptotic 
decay. One might expect that this deficiency would be particularly severe for 
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Fig. 3. Energy v s .  well depth for the two Gaussian wavefunction 
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Fig. 4. The variational parameters for the two Gaussian wavefunction 

states with energy very near the cont inuum threshold, as the energetic distance 
from this threshold determines the rate of  exponential decrease o f  the exact wave- 
function. In order to check the possible connect ion between this deficiency o f  the 
variational wavefunction used and the penetration into the continuum, a series o f  
variational computations with an exponential (Slater) wavefunction,  ~ = e  ~r, 
was carried out for the three dimensional case. 

The energy expression is 

E=/~. # 2 / 2  - -  2Z. #3. [xf~ exp (#z). erfc (#)-(1 + 2 #  2) - 2#] 

where 
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Fig. 5. Extrapolation of the penetration range to large basis sets 

The results obtained are qualitatively identical with those obtained for the Gaus- 
sian variational wavefunction, indicating that ascertaining the correct asymptotic 
behaviour is not sufficient to eliminate the penetration into the continuum. 

4. Diseussion 

The existence of  bound states in the continuum of the two electron atom has 
been argued by Stillinger and co-workers on the basis of  1/Z perturbation theory 
[5] and variational computations [4, 6]. 

The presently reported results cannot, of course, claim to characterize and 
exhaust all the possible situations which can give rise to bound states in the con- 
tinuum. They do, however, point out the possible existence of variational solutions 
exhibiting bound states in the continuum which are, manifestly, artifacts of the 
restricted space within which the variation is carried out. Although these results 
cannot and are not intended to rule out the possible existence of  real bound states 
in the continuum of the two electron atom, they indicate that variational computa- 
tions within a restricted space cannot provide an unequivocal foundation for the 
existence of  such states. The case for (or against) stable bound atomic states in the 
continuum is still not settled. 
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